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FIGURE 11.1  Overview of respira-
tion. Substrates for respiration are
generated by other cellular
processes and enter the respiratory
pathways. Glycolysis and the pen-
tose phosphate pathways in the
cytosol and plastid convert sugars
to organic acids, via hexose phos-
phates and triose phosphates, gen-
erating NADH or NADPH and
ATP. The organic acids are oxi-
dized in the mitochondrial citric
acid cycle, and the NADH and
FADH, produced provide the
energy for ATP synthesis by the
electron transport chain and ATP
synthase in oxidative phosphoryla-
tion. In gluconeogenesis, carbon
from lipid breakdown is broken
down in the glyoxysomes, metabo-
lized in the citric acid cycle, and
then used to synthesize sugars in
he cytosol by reverse glycolysis.
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FIGURE 11.2 Structures and reactions of the major electron-
carrying cofactors involved in respiratory bioenergetics. ()
Reduction of NAD(PY to NAD(PIH; (B) Reduction of FAD
to FADH,. FMN is identical to the Havin part of FAD and is
shown in the dashed box. Blue shaded areas show the por-
Hions of the molecules that are involved in the redox reaction.
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MADPH is qorerated in tre first
twwo raactinns of the pathiwvay,
whaers glucose-g-phosphate is
oxidized to ribulose-3-phosphate.
These reactinns are essantially
irreversibile
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FIGURE 11.5 Structure of plant mitochondria. (A) Three-dimensional representa-
tion of a mitochondrion, showing the invaginations of the inner membrane that
are called cristae, as well as the location of the matrix and intermembrane spaces
(see also Figure 11.10). (B) Electron micrograph of mitochondria in a mesophyll
cell of Vicia faba. (Photo from Gunning and Steer 1996.)
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FIGURE11.6 Reactions and enzymes of the plant citric acid cycle. Pyruvate is
completely oxidized to three molecules of CO,. The electrons released du ring

these oxidations are used to reduce four molecules of NAD* to NADH and
R ool of EAD to FADEL



(A)

From cytosol:

1 Malate

(B)

1 Pyruvate

|

1 Acetyl-CoA

1 Oxaloacetate

[

1 Malate

\

1 Citrate

-«

1 F‘j,,fr|..|1u.J.a‘cta*]I

!

1 Isocitrate

/

_

1 Acetyl-CoA

1 Oxaloacetate

From cytosol:

1 Citrate

+ | 1 Citrate

!

2 lsocitrate

4

>

© [zver |
¢

1 Pyruvate

l‘l Acetﬁyl_—CoA‘

1 Citrate

1 1 Isocitrate

[ 2-Oxogluta ratel

!

Nitrogen
assimilation

| 1 Oxaloacetate

FIGURE 11.7 Malic enzyme and PEP carboxylase provide
plants with metabolic flexibility for the metabolism of

pl osphoenolpyruvate. Malic enzyme makes it possible for
plant mitochondria to oxidize both malate (A) and citrate
(B) to CO, without involving pyruvate delivered by glycol-
ysis. The joint action of PEP carboxylase and pyruvate
kinase can convert glycolytic PEP to 2-oxoglutarate, which
is used for nitrogen assimilation (C).
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FIGURE 11.8 Organization of the electron transport chain
and ATP synthesis in the inner membrane of plant mito-
chondria. In addition to the five standard protein com-
plexes found in nearly all other mitochondria, the electron
transport chain of plant mitochondria contains five addi-
tional enzymes marked in green. None of these additional

The ubiguinone (UQ) pool diffuses
freely within the inner membrane and
sarves to transfer electrons from the
dehydrogenases to either complex Il
or the alternative oxidase.
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enzymes pumps protons. Specific inhibitors, rotenone for
complex I, antimycin for complex 11, cyanide for complex
IV, and salicylhydroxamic acid (SHAM) for the alternative
oxidase, are important tools to investigate the electron
transport chain of plant mitochondria.
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TABLE 11.1

" ]’heqreti:ail and experimental ADP:O ratios in
isolated plant mitochondria

ADP:0O ratio
Substrate Theoretical” Experimental
Malate 2.5 ] 24-27
Succinate 1.5 1.6-1.8
NADH (external) 1.5 1.6~1.8
! Ascorbate 1.0° 0.8-09

3. Addition of ADP stimulates 4. When all the ADP has

electron transfer (state 3) by been converted to ATP,
facilitating dissipation of the electron transfer reverts
electrochemical proton to a lower rate (state 4).

gradient. The rate is higher
after the second ADP addition
because of activation of
succinate dehydrogenase.

FIGURE 11.9 Regulation of respiratory rate by ADP during
succinate oxidation in isolated mitochondria from mung
bean (Vigna radiata). The numbers below the traces are the
rates of oxygen uptake expressed as O, consumed (nmol
min~! mg protein™'). (Data courtesy of Steven J. Stegink.)
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TABLE 11.2
The maximum yield of cytosolic ATP from the complete oxidation of
sucrose to CO, via aerobic glycolysis and the citric acid cycle

_.__-'_._-.ﬂ_._.__—m_n_iﬂlﬂﬂl—l‘“—_‘"—"—

Part reaction ATP per sucrose”

Glycolysis
4 substrate-level phosphorylations
4 NADH

Citric acid cycle
4 substrate level phosphorylations 4
4 FADH, 6
16 NADH 40

60

olic NADH i1s ned oxidized by the external NADH dehydrogenase. The
worylating pathways are d not to be engaged.
1.1
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FIGURE 11.11  Regulation of pyruvate dehydrogenase
(PDH) activity by reversible phosphorylation and by other

metabolites.
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FIGURE 11.13  Glycolysis, the pentose phosphate pathway
and the citric acid cycle contribute precursors to many
biosynthetic pathways in higher plants. The ]:r’:lhwﬂ}-&.
shown illustrate the extent to which plant biosynthesis
depends on the flux of carbon through these pathways and
emphasize the fact that not all the carbon that enters the
glycolytic pathway is oxidized to CO,.
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FIGURE 11.14 Structural features of
triacylglycerols and polar glyc-

erolipids in higher plants. The car- CH,OH
bon chain lengths of the fatty acids, ]
which always have an even number

of carbons, range from 12 to 20 but CHOH

are typically 16 or 18. Thus, the |

value of # is usually 14 or 16. CH,OH
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TABLE 11.3 : :
Common fatty acids in higher plant tissues

Name? Structure

Saturated Fatty Acids

Lauric acid (12:0) CHEECHE}]DCOEH
Myristic acid (14:0) CH3{CH?]]2CDEH
Palmitic acid (16:0) CH;(CH,), ,CO,H
Stearic acid (18:0) CH3(CH?}15CDEH
Unsaturated Fatty Acids
Oleic acid (18:1) CH4(CH,),CH = CH(CH,),CO,H
Linoleic acid (18:2) CH,(CH,),CH=CH —CH,—CH= CH(CH,),CO,H
Linolenic acid (18:3) CH;CH,CH= CH—CH —CH=— CH—CH,—CH = CH—(CH,),CO.H

“Each fatty acid has a numerical abbreviation. The number before the colon represents the total number of carbons: the num-
ber after the colon is the number of double bonds,
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FIGURE 11.15 Major polar lipids of plant membranes: (A) glyceroghycol-
ipids and (B) glycerophospholipids. At least six ditferent fatty acids may
be attached to the glycerol backbone. One of the more common molecular
species is shown tor each lipid. The numbers given below each name refer
to the number of carbons {number before the colon) and the numbier of

double bonds (number atter the colon)
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FIGLURE 11.16 Cvcle of fatty acid synthesis in plastids of f
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FIGURE 11.17 The two path-
ways for glycerolipid synthesis
in the chloroplast and ER of

Arabidopsis leaf cells. The major

membrane components are
shown in boxes. Glycerolipid
desaturates in the chloroplast,
and enzymes in the endoplas-
mic reticulum convert 16:0 and
18:1 fatty acids to the more
highly unsaturated fatty acids
shown in Figure 11.15.
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